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A class of models with self-generated disorder and controlled frustration is studied. Between the trivial case,
where frustration is not present at all, and the limit case, where frustration is present over every length scale,
a region with local frustration is found where glassy dynamics appears. We suggest that in this region, the mean
field model might undergo ap-spin like transition, and increasing the range of frustration, a crossover from a
1-step replica symmetry breaking to a continuous one might be observed.
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The study of spin glasses and glassformers has shown that
these systems present similar complex dynamical behaviors.
In particular the dynamical equations ofp-spin models[1], a
generalization of the spin glass model in mean field, coincide
above the dynamical transition temperature with the mode
coupling equations for supercooled liquids[2]. However the
connection in finite dimension between spin glasses and
glassformers is not completely clear. On the one hand, spin
glasses undergo a thermodynamic transition at a well defined
temperature, where the nonlinear susceptibility diverges. The
systems that show a transition of this kind, in spite of very
different microscopic structures, have two essential common
characteristics: The presence of competitive interactions
(frustration) and quenched disorder. On the other hand,
glassformers are a class of systems where disorder is not
originated by some fixed external variables, but is “self-
generated” by the particle positions and orientations. More-
over there is no sharp thermodynamic transition character-
ized by the divergence of a thermodynamic quantity
analogous to the nonlinear susceptibility. In order to clarify
the connection and the differences between glasses and spin
glasses, and to investigate the roles of disorder and frustra-
tion in the behaviors observed, in the present paper we study
a class of models with annealed interactions and controlled
frustration.

We consider a diluted spin glass, the frustrated lattice gas
(FLG) [3], constituted by diffusing particles, and therefore
suited to study quantities like the diffusion coefficient, or the
density autocorrelation functions, important in the study of
liquids. The Hamiltonian of the model is:

− H = Jo
ki j l

sei jSiSj − 1dninj + mo
i

ni , s1d

where Si = ±1 are Ising spins,ni =0,1 areoccupation vari-
ables, andei j = ±1 are ferromagnetic and antiferromagnetic
interactions between nearest neighbor spins. This model was
studied both for quenched[3,4] and annealed interactions
[5]: In the quenched case the interactions,ei j , are quenched
variables randomly distributed with equal probability; in the
annealed caseei j evolve in time.

In the limit m /T goes to infinity all sites are occupied
(ni ;1 for each sitei), and the quenched model reproduces
the Ising spin glass. In the other limit,T/J=0, the model, Eq.

(1), has properties recalling a “frustrated” liquid. Indeed the
first term of the Hamiltonian implies that two nearest neigh-
bor sites can be freely occupied only if their spin variables
satisfy the interaction, that is ifei jSiSj =1, otherwise they feel
a strong repulsion. Since in a frustrated loop the spins cannot
satisfy all the interactions, in this model particle configura-
tions in which a frustrated loop is fully occupied are not
allowed. The frustrated loops in the model are the same of
the spin glass model and correspond in the liquid to those
loops which, due to geometrical hindrance, cannot be fully
occupied by the particles.

Here we study a class of annealed FLG models defined by
the following partition function:

Zan = o
hej

*

o
hsj

e−bH, s2d

whereH is given by Eq.(1), the sumohsj is over all the
possible configurations of spin and particleshsj;hSi ,nij,
and the sumohej

* is over all the possible interaction configu-
rations such that the annealed averages of the frustrated loop
number coincide with the quenched ones for every length of
the loops until a maximum value,rmax (rmax=0,4,6,8 ,̄ on
a cubic lattice). Varying rmax from zero to infinity a class of
models with controlled frustration is obtained. In the limit,
rmax=0, frustration is not present at all: the model[5] is
equivalent to a lattice gas with a repulsion between nearest
neighbors, and without frustration and correlations between
spin, and no thermodynamic transition is present. In the other
limit, rmax goes to infinity, frustration is present over every
length scale, as in the quenched case: We expect that the
partition function, Eq.(2), coincides with the quenched one,
namely the model undergoes a spin glasslike transition[4],
as shown in Ref.[6] for the Ising spin glass model[7]. For
intermediate values ofrmax a class of models with local frus-
tration and self-generated disorder is obtained.

In the present paper the models, Eq.(2), have been stud-
ied for rmax=4 andrmax=6: In the first case a trivial dynami-
cal behavior is observed, with one step relaxation functions
and a smooth increasing of relaxation time as function of
density; in the second case a dynamical behavior very similar
to that of glass formers is instead found. We therefore ob-
serve that by increasing the degree of frustration the system
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moves from a liquidlike to a glassylike behavior.
The system was simulated using Monte Carlo techniques

over a cubic lattice of linear sizeL=8. At the beginning the
interactions,ei j = ±1, are randomly distributed with equal
probability. At each step of the dynamics an attempt to move
a particle to a nearest neighbor site(the spin is flipped with a
probability equal to 1/2) is alternated with an attempt to
exchange two nearest neighbor interactions: in the limit here
considered,T/J=0, a particle can move to a nearest neighbor
site only if its spin satisfies the interactions with all the new
nearest neighbors, and an interaction can be changed only if
at least one of its extreme is empty. The frustrated loop num-
bers of any fixed length untilrmax are independently kept
constant during the dynamics.

At a given value of the density,r, we calculated the two-
time relaxation function of the self-overlap,Cst ,twd
=1/Npoi=1

L3
SistwdnistwdSistdnistd, where Np is the number of

particles, and the averagē is done over 8–32 different
realizations of the system. For values oftw long enough, the
system reaches a stationary state, where the time translation
invariance is recovered, i.e.,Cst ,twd=Cst− twd. In this time

region we calculated the equilibrium relaxation function of
the self-overlap:

kqlstd =
1

Np
o
i=1

L3

kSistdnistdSist + t8dnist + t8dl, s3d

and the dynamical nonlinear susceptibility[9]:

xstd = Npskq2lstd − kql2stdd. s4d

Herek¯l is the time average on timet8. For each density the
quantities of interest are averaged over 8−32 different real-
izations of the system, and the errors are calculated as the
fluctuations over this statistical ensemble.

We first consider the model withrmax=4: Since rmax
equals the loop minimum length, the interactions evolve un-
der the constraint that the number of frustrated loops of
length 4 is kept constant. In this case, bothkqlstd and xstd
show a liquidlike behavior also at high densities:kqlstd, plot-
ted in Fig. 1, relaxes with a one step decay well fitted by a
stretched exponential function,fstd=A exph−st /tddj, with d

FIG. 1. The relaxation functions of the self-overlap,kqlstd, for
rmax=4 at the densitiesr=0.63, 0.70, 0.74, 0.76(from left to right).
The continuous curves in figure are stretched exponential functions
with d=0.93.

FIG. 2. The relaxation functions of the self-overlap,kqlstd, for
rmax=6 at the densitiesr=0.48, 0.54, 0.59, 0.63, 0.66, 0.71, 0.73
(from left to right).

FIG. 3. The relaxation functions of the self-overlap,kqlstd, for
rmax=6 at the densityr=0.69. The curve in figure is the
b-correlator of the MCT with exponent parametersa=0.327 and
b=0.641, and plateau heightf0=0.84.

FIG. 4. The scaled relaxation functions of the self-overlap,
kqlst /td / f0, as a function of the scaled time,t /t, at the densities
r=0.54, 0.59, 0.63, 0.66. 0.71(from right to left). The continuous
curve is a stretched exponential function withd=0.71.
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.0.93 not depending on the density; andxstd tends to a
plateau, which smoothly increases as a function of density.
We suggest that this behavior might be due to the fact that
there is only a few residual frustration on loops of length
greater than 4, and frustration is too local to originate a slow
dynamics.

A very different behavior is instead observed in the model
with rmax=6 (where the interactions evolve under the con-
straint that the number of frustrated loops of length 4 and 6
are independently kept constant). In Fig. 2, kqlstd are plotted
at different values of the density. At high density two step
decays appear and the curves are well fitted at intermediate
times by the forms predicted near the dynamical transition by
the mode coupling theory(MCT) [2,8] (see Fig. 3). In Fig. 4,
the scaled relaxation functions of the self-overlap,
kqlst /td / f0, are plotted as function of the scaled time,t /t. At
long times the curves collapse onto a single master function,
well fitted by a stretched exponential(the continuous curve
in figure), and the relaxation time,t, diverges as a power
law, srt−rd−gt, with rt.0.79±0.02 andgt=4.9±0.7 (see
Fig. 5).

The dynamical nonlinear susceptibility,xstd, shown in
Fig. 6, presents a maximum at a time,t* , which we interpret
as the relaxation time of the interactions: Untilt* the dynami-
cal nonlinear susceptibility increases as if the environment
were quenched, and only fort. t* the interactions evolve
andxstd can decrease to the equilibrium value. A dynamical
nonlinear susceptibility with a maximum is typical of glassy
systems[9,10]. As in Lennard-Jones liquids we found that
the value of the maximum,xst*d, which diverges in the
p-spin model[9] as the dynamical transition is approached
from above, has instead a maximum: We suggest that in the

present case this behavior might due to the fact that the sys-
tem becomes less and less frustrated as the density increases
[11].

Finally we calculated the particle mean square displace-
ment, kDr2lstd=1/Npoi

Npksr ist+ t8d−r ist8dd2l, where r istd is
the position of theith particle at the timet. At high density
the mean square displacement is not linear at short time, and
the diffusion coefficient,D, is calculated from the long time
regime of the mean square displacement via the relation,D
=limt→`kDr2lstd /6t. The diffusion coefficient, shown in Fig.
5, is well fitted by a power law,srD−rdgD, with rD
=0.80±0.01 andgD=2.46±0.19. The critical density,rD, ob-
tained in this way coincides with the value,rt=0.79±0.02,
where the relaxation time,t, diverges; the exponent,gD, is
instead not consistent withgt=4.9±0.7.

In conclusions the properties of the annealed models, Eq.
(2), strongly depend on the value ofrmax. In particular by
increasing the degree of frustration a crossover from a liq-
uidlike to a glassylike behavior is found. We suggest that the
model with rmax=6, where a dynamical glass transition is
observed, in mean field might undergo ap-spin like transi-
tion with a 1-step replica symmetry breaking in the spin
overlap distribution. Moreover it is reasonable to expect that,
by further increasing the degree of frustration, the annealed
partition function, Eq.(2), might tend to the quenched one,
where a spin glasslike transition[4,12] and the development
of a continuous replica symmetry breaking in the spin over-
lap distribution[14] is found, and a crossover from glassy-
like to spin glasslike behavior might be observed.
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